All UK Exam Boards included

Epigenetics

Download Topic

In eukaryotes, epigenetics refers to the heritable changes in gene function that do not involve any change to the DNA sequence. This underpins an embryo’s ability to differentiate its cells into specialised lineages for different organs and tissues in the adult: skin tissue, muscle tissue, nervous tissue, etc.

 

Transcription can be inhibited by specific means. A common way is increased DNA methylation. The methyl (CH3) group acts as a tag on the DNA at various locations and prevents transcription that might’ve occurred otherwise.

 

 

Another chemical modification that can induce epigenetic effects and control gene expression is histone deacetylation. Histones hold the DNA chromatin and help to compress it. In its acetylated state, it is relaxed and the DNA can be accessed by transcription machinery. Deacetylation results in the tightening of chromatin around the histones, no longer making the genetic material accessible.

 

 

Knowledge of epigenetics can help in addressing various illness including cancer. Controlling gene expression remotely is much easier than having to change the DNA sequence itself. Drugs can act as signals for specific genes to be activated or deactivated. In the case of cancer, it has been shown that cancer cells switch off the genes associated with tumour detection. They also show additional epigenetic anomalies such as histone modifications and deregulation of proteins that bind DNA.

 

 

RNA interference (RNAi)

A major component in the regulation of transcription and translation is RNA interference, notably via microRNA (miRNA) and small interfering RNA (siRNA).

miRNA is a sequence complementary to a portion of transcribed mRNA. Upon binding a complex protein, it attaches to the section of target mRNA, thus blocking translation as well as speeding up the eventual breakdown of the mRNA strand.

 

 

As for siRNA, it does what it says, it interferes and it’s small! What does it interfere with? It interferes with translation by binding to mRNA and cleaving it. This prevents it from being translated in the cytoplasm via tRNA and ribosomes to produce a polypeptide. Therefore the specific gene it codes for is not expressed.

 

 

siRNA is a short, double-stranded fragment of RNA which binds and cleaves mRNA through a RISC – RNA-inducing silencing complex. This is the same Dicer processing enzyme and the RISC protein complex involved in the miRNA pathway because miRNA and siRNA share the same machinery after they’re synthesised.

 

 

 

 

Sorry! There are no posts.

Sorry! There are no posts.

Your Reviews

Just a huge thank you for spending your time helping others. I love your site and I'm seriously very grateful. No word of a lie

Neuron13 The Student Room

Thank you for the help, your website and videos are awesome

pika mart YouTube

wow just checked out your website and think it’s pretty cool.

Eager bug The Student Room

Good topic notes and cool videos. I'll definitely recommend it to my students.

Seema Sehgal AQA Examiner and biology teacher on LinkedIn

I’ve struggled so much with feeling overwhelmed with biology revision, and I don’t know where to start. But your website is just what I need! It tells me all the information I need, and the knowledge I need to then build on, and it’s written in a way that soaks straight up into my brain!

Prettyhetty The Student Room