Action potential

 

Resting potential

Action potential


Resting potential

 

What happens in a resting state where no impulses are being sent through a neuron?

 

This is the resting potential where the membrane permeability differentiates between sodium (Na+) and potassium (K+) ions so that at any given time there are more Na+ ions outside than inside and more K+ ions inside than outside.

 

 

According to these electrochemical gradients, Na+ ions should move back inside to balance out their concentration (equilibrate) while K+ ions should move back outside the membrane until the concentrations are equal inside and out. This clearly isn’t the case, so what gives?

 

Found on the membrane there are Na+/K+ pumps which carry out active transport against the electrochemical gradient of these ions. The resting potential of the membrane is negative on the inside and positive on the outside – but how? Aren’t both sodium and potassium ions positively charged? This is achieved by the pump transferring 3 Na+ ions out while taking only 2 K+ ions in. This is where the difference comes from.

 

Action potential

Now we know that in the absence of an action potential the resting potential of the neurone membrane is negative (about -70 mV; millivolts). What precedes an action potential and how does it unfold?

A stimulus may depolarise the membrane by opening up Na+ channels for those ions to rush into the axon. An action potential will occur only if the depolarisation passes a certain threshold. For example, if it reaches -60 mV up from -70 mV it will not trigger an…

Test Call to Action!