fbpx

πŸ§ͺ Practical skills assessed in a written examination

Planning

Variables

Variables are factors present in an experiment. Often, they are the factors that we are primarily interested in e.g. testing a food variable against an age variable. Due to the nature of experiments taking place in the actual world, many confounding variables can present themselves, more or less clearly, in experiments. Confounding variables are those variables which can overlap so that it cannot be obvious whether a result is due to one variable or another. For example, in looking at people’s diets which contain both fat and sugar, these components are confounding variables of each other in a study that wants to only look at the effect or fat or sugar.

 

In order to tease away confounding variables from each other, a technique called randomised block design is used to categorise data into groups, and then carry out the experiment independently in each. For example, participants can be split by weight, diet, sex, height, etc. so that any findings can be said to not be due to any of these pre-split factors.

 

Variables vary by the type of data they can produce. Discrete variables give rise to individual data points that cannot be connected e.g. colours, whole numbers of things, blood groups. Continuous variables give rise to data that is possible on a spectrum of connected values e.g. height, width, solute concentration.

 

 

As such, the data derived can be qualitative (green, blood group B), quantitative (1.55 m, 65 nm, 50 nM NaCl) or…

πŸ† Read 500+ topics for all 6 UK exam boards πŸ†

πŸ“ Enter now to claim your FREE 3-day trial and find answers to all your revision topicsΒ πŸ“

βœ”οΈ Just Β£3.49/month after that. Cancel anytimeΒ βœ”οΈ

You explain everything so simply!Β πŸ™‚Β -SecretDuck on The Student Room